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Abstract

Phylogenetic comparative methods are one of the most important parts of the morphometric toolkit
for studies of morphological evolution. The assessment of repeated independent events of evolu-
tion of phenotypic and associated ecological-functional traits is still a starting point for the study
of adaptation, but modern comparative approaches go beyond correlative methods, allowing for
the modeling of evolutionary scenarios and analyses of trait evolution patterns. The evidence for
adaptive change due to ecological diversification is stronger (even if still circumstantial) if mod-
els that predict increases in diversification rate fit the data well and the morphological changes are
associated with ecological and functional changes. A large body of literature is dedicated to meth-
odological and theoretical aspects of comparative methods, but in the context of univariate traits.
On the other hand, biological shape is a complex trait, and morphometric data is essentially mul-
tivariate. Whereas most comparative methods allow for direct multivariate extensions, dimension
reduction is an almost certain requirement due to the high dimensionality of morphometric data
sets and the large number of evolutionary parameters that need to be estimated by comparative
methods. Objective methods with considerable statistical support to determine data dimensional-
ity exist, but the applied literature usually relies on subjective criteria to assess how many shape
dimensions should be retained. The most appropriate calculation and interpretations of principal
components, the most popular dimension reduction method, are also topics that should be con-
sidered more carefully in applications. The maturity of comparative methods and the development
of model-based approaches linking macroevolutionary patterns and microevolutionary processes
provide an exciting perspective for the study of morphological evolution.

Introduction
The study of interspecific comparative data sets has a long history in
evolutionary biology. In this context, the recurrent association between
phenotypic and ecological traits in different lineages is often used
as evidence, even if circumstantial, of adaptation (Harvey and Pagel,
1991; Losos, 2011a), defined non-historically as the phenotypes that
present higher fitness than other phenotypes in a given environment
(Martins, 2000; Lewens, 2007). The strength of the evidence is related
to the number of times that a given combination of phenotype and envir-
onment arises independently during the evolution of a lineage (Harmon
et al., 2005). Felsenstein (1985) called attention to the fact that trait val-
ues for species at the tips of a phylogenetic tree are not necessarily in-
dependent pieces of evidence in statistical analysis, because part of the
trait’s evolutionary history is shared by common descent. Felsenstein
pointed out issues with previous attempts to deal with the statistical
problem of non-independence and proposed an elegant method to deal
with the problem, known as phylogenetic independent contrasts.

A period of effervescence followed, when a number of methods were
proposed for the statistical analysis of phylogenetic non-independent
data (Cheverud et al., 1985; Grafen, 1989; Garland et al., 1993; Hansen,
1997; Martins and Hansen, 1997; Diniz-Filho et al., 1998). Despite a
sharp increase in popularity, the interpretation of results from com-
parative analyses, the assumptions being made, and the appropriate
combination of methods were not always straightforward. Many au-
thors discussed aspects of application, interpretation or whether com-
parative methods were useful at all (Westoby et al., 1995; Björklund,
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1997; Losos, 1999; Freckleton et al., 2002; Freckleton, 2009). Accord-
ing to the jargon commonly used in the early period, the comparat-
ive methods would sometimes transform the original variables “cor-
recting” for phylogenetic non-independence (phylogenetic independ-
ent contrasts) or decompose variation into “phylogenetic” (autocorrel-
ation) or “heritable” (mixed models) components versus specific or
residual components. Another possibility was to incorporate phylo-
genetic non-independence in the residuals using a generalised linear
model (phylogenetic generalised least squares – PGLS). The analogies
between statistical results from the different models with evolutionary
processes started to appear in the literature, such as the decomposi-
tion of variation into a phylogenetic (reflecting “historical constraints”)
and a specific component (reflecting “adaptation”) via autocorrelation
(Cheverud et al., 1985). In these early contributions, phylogenetic non-
independence was interpreted as evidence of phylogenetic constraint
(a concept similar to the modern definition of phylogenetic inertia –
see below), and only correlations among specific values were accepted
as evidence for the action of selection, both interpretations no longer
considered valid (Hansen and Orzack, 2005). The multitude of meth-
ods, applications and interpretations generated some conflicts, partic-
ularly when different authors used the same concept names with dif-
ferent definitions (as in phylogenetic inertia – see below). A number
of reviews related statistical properties, grouping methods and point-
ing out similarities, differences and limitations (Martins, 2000; Rohlf,
2001; Freckleton et al., 2002; Martins et al., 2002; Hansen and Orz-
ack, 2005). A book summarised some of the early approaches (Harvey
and Pagel, 1991), but the methodological and conceptual developments
have been so massive during the last decade that new books on the sub-
ject (both entry level and advanced) are urgently needed again.
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Figure 1 – Phylogenetic structure of a hypothetical correlational study, associating mor-
phology and diet in a lineage of bats. A) Pattern of association between shape and diet,
where one aspect of shape (elongation) is associated with dietary di�erences (relative con-
tribution of fruit versus nectar, represented as shades filling the geometric figures). The
axes relate to groups of multiple variables, but are represented in a bivariate scatterplot
for simplicity. B) Star phylogeny pattern of covariance, where each OTU represents an
independent piece of evidence. C) Phylogenetic structure where the evolutionary trans-
ition in diet and shape was observed four times independently. The assumed shape and
diet of the ancestor (Frugivory, not elongated) is represented near the root of the tree. D)
Phylogenetic structure where the evolutionary transition in diet and shape was observed
only once.

Statistical approaches in comparative methods
The statistical problem tackled by comparative methods is represented
in Fig. 1. When attempting to correlate two groups of variables (shape
and diet) with values measured on OTUs (tips of the phylogeny – ex-
tant species), one might come to a result as in Fig. 1A, showing an
association between shape (the elongation of the figures) and diet (rel-
ative importance of fruit and nectar). The correct interpretation of this
pattern and its significance as evidence that natural selection might be
responsible for the observed association depends on the phylogenetic
covariance structure assumed for the residuals of this model. Com-
mon statistical methods (i.e. non-phylogenetic) assume that all obser-
vations are independent as in Fig. 1B. However, if the phylogenetic
structure in Fig. 1C is assumed, the diet transition between frugivory
and nectarivory was observed four times independently (the postulated
ancestor was a frugivore), leading to a decrease in the number of de-
grees of freedom. The phylogenetic structure in Fig. 1D is what Felsen-
stein (1985) called a “worst case” phylogeny, where the diet transition
was observed only once, and the four nectarivore species are not inde-
pendent observations. The strength of circumstantial evidence for ad-
aptation is greater if we assume the phylogeny in Fig. 1C than the one
in Fig. 1D, but that is a statistical consequence of the reduced num-
ber of degrees of freedom. Even if we assume the phylogeny in Fig.
1D as true, it does not mean that the shape differences are “caused” or
“constrained” by phylogeny.

Translating this problem into a working statistical model requires
the definition of three components: hypotheses, sampling assumptions
(random, independent?) and statistical assumptions (distribution of re-
sponse variables) (McPherson, 1990). Of greater concern here are the
sampling assumptions, as phylogenetic non-independence is the mo-
tivation behind the use of phylogenetic comparative methods. Con-
sidering the phylogeny in Fig. 1C as the actual sampling structure,
the method of phylogenetic independent contrasts transforms the ori-
ginal values of shape and diet in a way that the resulting observations
(contrasts) are standardised differences among tips or estimated nodes
descending from the same immediate common ancestor (Felsenstein,
1985). Correlations of contrasts for different traits were expected to
arise independently of similarities due to common ancestry. A statist-

ically equivalent approach would be to use a generalised linear model
that incorporates the structure of phylogenetic covariance among obser-
vations into the error term (Martins and Hansen, 1997; Rohlf, 2001), as
can be done for non-independent spatial or time series data. In this case,
the expected phylogenetic covariance for any pair of species would be
proportional to the sum of branch lengths leading from the root to their
last common ancestor. Using branch lengths to directly estimate phylo-
genetic covariances assumes that the response variables evolved ac-
cording to a Brownian motion model (BM), where differences among
species are proportional to the branch lengths leading to their most re-
cent ancestor. This assumption, however, can be flexible, and other
evolutionary models can be used by transforming branch lengths or
species covariances to reflect alternative models, such as stabilising se-
lection or allowing for varying rates of character evolution (Martins and
Hansen, 1997; Freckleton et al., 2002; Blomberg at al., 2003).

Most applications of comparative methods assume that the species
means used are representative and that within-species variation is neg-
ligible when compared to among-species variation (Garamszegi and
Moller, 2010). Whereas this assumption might hold true for a num-
ber of studies, it has been shown that ignoring intraspecific variability
can lead to increased type I error rates when intraspecific variances
are large and sample sizes are small (Harmon and Losos, 2005). One
concern for multivariate morphometric studies is the downward bias
shown to influence estimates of correlation and regression coefficients
when measurement error is large (Ives et al., 2007). Specific modi-
fications of well known methods (phylogenetic independent contrasts,
PGLS) were proposed to take measurement error (and within-species
biological variability) into account when estimating parameters (Ives
et al., 2007; Felsenstein, 2008), and the potential for these methods in
morphometrics is great, both providing less biased estimates of cov-
ariances and correlations or in using maximum likelihood to compare
observed and hypothetical covariance matrices or levels of variation
(intraspecific, interspecific) (Felsenstein, 2008).

Early attempts to use quantitative genetics theory to discrimin-
ate between evolutionary processes came from the expectation of
among-population covariances under genetic drift proposed by Lande
(Lande, 1979, 1980) and the associated tests, comparing among and
within population covariance matrices (Lofsvold, 1988; Ackermann
and Cheverud, 2002), and more recently even incorporating phylo-
genetic non-independence (Revell, 2007). Modern comparative ap-
proaches usemodel selection to infer best fitting evolutionarymodels or
scenarios from expected OTU means instead of among-group covari-
ances (Butler and King, 2004; Hansen et al., 2008) and to estimate evol-
utionary parameters reflecting historical changes of evolutionary rates
of trait diversification (O’Meara et al., 2006; Revell at al., 2012). Go-
ing back to the example discussed, one might then ask, given the data in
Fig. 1A and the tree in Fig. 1D, whether the likelihood of the pattern of
differences observed is higher under a Brownian motion model (which
encompasses both neutral evolution or random fluctuations of adaptive
optima over time) or under a stabilising selection model with two op-
tima (for eating fruit or nectar), that function as attractors in the model
and can be interpreted as fixed adaptive peaks. In this model-based
approach, the focus moves from the number of independent branches
showing the evolutionary transitions of interest, to the maintenance of
adaptive optima under stabilising selection (Hansen, 1997). Because
the evolutionary mechanisms are modeled directly, the methods also
provide a way to estimate parameters relating postulated processes to
observed interspecific patterns in the evolution of quantitative traits,
such as the strength of selection towards an adaptive optimum for a
character (Hansen and Orzack, 2005), or evolutionary divergence rates
(a measure of phenotypic variation in the phylogeny) that might change
along different branches (O’Meara et al., 2006; Revell at al., 2012).

Conceptual issues with comparative methods
The maturity of comparative methods have also provided clearer defin-
itions for concepts that have been confused and misinterpreted for a
long time, such as phylogenetic signal (or effect) and phylogenetic in-
ertia, considered synonyms by some authors (Losos, 1999). Phylogen-
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etic signal is a pattern of statistical non-independence, where phen-
otypic similarity is associated with phylogenetic relatedness (Revell
et al., 2008; Klingenberg and Gidaszewski, 2010), whereas phylogen-
etic inertia is the tendency of a trait to resist a current adaptive force
(Blomberg and Garland, 2002; Hansen and Orzack, 2005). Phylogen-
etic inertia can be caused by constraints in development or variation
(canalisation, trade-offs due to correlations with lower fitness traits),
and is itself recognised as one of the causes behind phylogenetic effects
(Harvey and Pagel, 1991), along with adaptive explanations. The con-
fusion between the concepts of phylogenetic inertia and signal led to a
misconception of phylogenies as sources of variation in statistical mod-
els (Losos, 2011b), and the wrong interpretation of phylogenetic signal
as evidence of “constraint”. Phylogenetic inertia and adaptation are not
mutually exclusive explanations for interspecific differences, neverthe-
less, they can only be properly assessed in comparisons where their
effects on each other are jointly controlled for (Hansen and Orzack,
2005; Hansen et al., 2008). The phylogenetic generalised least squares
(PGLS) models provide a useful framework for such analyses. Adapt-
ation can be tested and estimated by the main effects in a PGLS model
and inertia can be tested and estimated from the phylogenetic signal in
the residual (or error) term of the same PGLS model (Hansen et al.,
2008).

Several measures and tests of phylogenetic signal strength have
been proposed (Blomberg and Garland, 2002; Freckleton et al., 2002;
Blomberg at al., 2003; Klingenberg and Gidaszewski, 2010; Diniz-
Filho et al., 2012). Interpretations relating specific values of these
phylogenetic signal statistics to evolutionary processes have been pro-
posed. For example, Blomberg’s K statistic is expected to be one if trait
evolution behaves as expected by a Brownian motion model, whereas
it is less than one if species are less similar than expected by phylo-
genetic relatedness (too many convergences?) and greater than one if
species are more similar than expected by neutral evolution (stabilising
selection?). However, the link between evolutionary patterns and pro-
cesses has been challenged by simulation studies (Revell et al., 2008),
showing that different models can lead to similar patterns of species
similarity within a phylogeny. The model-based approach discussed
before provides a more robust basis for evolutionary process inference
in the context of comparative data. Measures of phylogenetic signal
have also been proposed as a means to determine whether it is neces-
sary to use a comparative method or not, implying that traits with low
or non-significant phylogenetic signals would not require the phylo-
genetic non-independence to be included in the model (Losos, 1999;
Klingenberg and Gidaszewski, 2010; Losos, 2011b). This approach is
no longer recommended, because the statistical models make assump-
tions about the distribution and independence of the error (differences
between observed and predicted), not the raw data (Revell, 2010). Test-
ing for phylogenetic signal on the traits directly to decide whether to use
a phylogenetic comparative method is an error equivalent to testing for
normality and homoscedasticity in raw data, before a linear model is
fitted (Hansen and Orzack, 2005). The strength of phylogenetic signal
can be jointly estimated with the statistical model to determine the most
appropriate form of the covariance error matrix (assumptions regard-
ing the evolutionary model), using a number of alternative measures
of phylogenetic signal (Martins and Hansen, 1997; Blomberg at al.,
2003). As a result, if the error structure of the response variable does
not show strong phylogenetic signal, the phylogenetic covariance mat-
rix will approach the identity matrix assumed when errors are expected
to be independent. Because the comparative methods are flexible re-
garding the evolutionary model and the strength of phylogenetic signal,
it is advisable to always include phylogenetic information in the statist-
ical models.

An important issue that is frequently overlooked is the fact that
studies showing correlations between ecological and morphological
changes are by no means considered direct evidence of causation (Mar-
tins, 2000). A number of reasons (alternative to direct causation) can be
invoked to explain correlations (Losos, 2011a), for example, selection
on body size (associated with dietary differences) has probably led to
correlated allometric shape differences in the skull of new world mon-

keys (Marroig and Cheverud, 2005). When many traits are correlated
with the same fitness differences, it can be complicated to discernwhich
ones are under selection just from correlation results. In spite of the
problems, correlation studies are an important source of patterns that
require further investigation by in depth studies measuring the strength
of selection or the experimental link between performance, morpho-
logy, and ecology (Losos et al., 1997; Winter and von Helversen, 2003;
Langerhans and DeWitt, 2004; Langerhans et al., 2004; Nogueira et
al., 2009; Losos, 2011a). The problem of inferring evolutionary origin
from correlation is by no means exclusive to phylogenetic comparative
analyses, but a more general issue in evolutionary biology (Martins,
2000), and the subject of a deep philosophical debate (Sober, 1993;
Lewens, 2007). The difficulty of inferring causation from correlation
is also firmly rooted in Popper’s principle of falsificationism, where it is
much easier to falsify a hypothesis than to prove it (Paipneau, 2003). A
single negative finding is sufficient to disprove a hypothesis, whereas no
number of supporting findings will be considered a conclusive proof.

Comparative methods and morphometric data
Shape is defined as all the geometrical information that remains after
location, scale and rotational effects are filtered out from an object
(Dryden andMardia, 1998), and the study of shape is essentially a mul-
tivariate undertaking. The simplest morphometric data structure is a
triangle of landmarks (Bookstein, 1991), requiring two variables to de-
scribe its shape variation. As a result, morphometric studies of compar-
ative data are presentedwith the additional difficulty of either extending
the statistical models to multiple response variables when feasible, or
using a method to reduce dimensionality to one or just a few variables.
A review of published papers that presented results of morphometric
analyses of comparative data provides a summary of the diversity of
approaches as discussed below. In this review, I did not discriminate
among geometric morphometric studies using landmark coordinates or
“traditional” morphometric studies using distances measured among
landmarks as data, because the relevant multivariate methods are the
same for both kinds of data.

Most comparative methods are readily extensible to multivariate
data, but comparative studies seldom use shape variables (as Procrustes
aligned coordinates or partial warp plus uniform component scores)
directly in the statistical models. They reduce the dimensionality of
the data set first (using their principal components also called relat-
ive warps). It is also important to note that shape is not necessarily
the response variable, and the position of shape variables in the mod-
els will depend on the hypotheses being tested. Although comparative
studies mostly associate shape variation with ecological or functional
variables, morphological diversification within lineages can be asso-
ciated with amounts of speciation (Adams et al., 2009), or the evolu-
tion of specific morphologies can be associated with shifts in cladogen-
esis (Fitzjohn, 2010). One possibility for correlational studies is to use
PGLSmodels to fit regressions betweenmatrices of shape variables and
functional and ecological variables (Rüber and Adams, 2001; Clabaut
et al., 2007; Meloro et al., 2008; Raia et al., 2010). Phylogenetic in-
dependent contrasts can also be calculated for each shape variable be-
fore associating them with contrasts for ecological variables, either by
multivariate regression (Figueirido et al., 2010) or partial least squares
(PLS) (Klingenberg and Ekau, 1996). This approach should be statist-
ically equivalent to PGLS, as long as the among-taxa covariances are
exactly proportional to the branch lengths (assuming a Brownian mo-
tion evolutionary model) in the phylogenetic tree (Rohlf, 2001). An-
other possibility is to correlate morphometric distances with ecological
and phylogenetic distances using a matrix correlation method (Harmon
et al., 2005; Young et al., 2007; Astua, 2009; Monteiro and Nogueira,
2010). This distance matrix-based approach is less informative than
other comparative methods (PGLS, model-based approaches), and is
considered a less powerful option (Peres-Neto and Jackson, 2001). The
multivariate models discussed above have been mostly used for signi-
ficance testing, whereas the visualisation of shape variation patterns
has been almost exclusively dependent on principal components ana-
lysis (as in the phylomorphospace discussed below).
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The sets of shape variables can be considerably large, and the most
common approach by far is the reduction of shape variables (where
the observations are the species means) to a set of principal compon-
ents (PCs) and fitting comparative statistical models using one or a few
PCs. Dimension reduction by principal components analysis (PCA) is
a technique commonly used in multivariate analysis to reduce multidi-
mensional data sets to a small number of interpretable axes that retain a
maximum amount of variation (Jolliffe, 2002). These shape PCs can be
associated (using comparative methods) with ecological variables (or
PCs of these) that might explain the patterns of variation among spe-
cies, but they need to be carefully interpreted, because although they
correspond to axes of major variation in shape space, they are not de-
signed to maximise correlation or covariance with any set of ecological
variables (as partial least squares would). This is important when inter-
preting non-significant results, because not finding a clear association
between shape PCs and ecological variables does not mean a signific-
ant association does not exist for a different linear combination of shape
variables and does not exclude multivariate significance (the ecological
variables are just not associated with the main axes of interspecific vari-
ation).

Studies that reduced the original set of variables into principal com-
ponents for comparative analysis have used them as univariate variables
(one PC at a time) or smaller multivariate data sets to calculate regres-
sions or correlations of phylogenetic independent contrasts (Bergmann
and Irschick, 2011; Brusatte et al., 2012), fitting PGLS regression
models (Nogueira et al., 2009), and evaluating alternative evolution-
ary scenarios with the model-based approach (Bergmann et al., 2009;
van Buskirk, 2009; Collar et al., 2009). Meloro (2012) used a slightly
different approach to evaluate the association between shape and func-
tional variables in the mandible of carnivores, employing partial least
squares (PLS) to extract pairs of linear combinations within both sets
of variables that explain most cross-covariance between sets (Rohlf and
Corti, 2000). The PLS axes were then “validated” by PGLS regression
of the shape (as dependent) on diet and size. In this case, the PLS will
not construct a linear combination of shape variables that maximises
the variation among species, but that should be associated with the vari-
ables of interest. One possible problem with this approach, as pointed
out by Revell (2009), is that the phylogenetic non-independence needs
to be incorporated in the estimates of covariances themselves, not just
in a posteriori statistical tests (further discussed below).

The principal components are more appropriately used as a mul-
tivariate set in comparative analyses (Losos, 1990; Monteiro and
Nogueira, 2011). If any subset of PCs will be used as variables (as
opposed to the set explaining 100% of total variation), a criterion is
needed to determine how many PCs should be retained. A popular
criterion in morphometrics is the broken-stick, where the percentage
of variance explained by each principal component is compared with
a null distribution of expected percentages when the total variation
is randomly distributed among principal components (Harmon et al.,
2005; Morgan, 2009; Brusatte et al., 2012). However, the vast major-
ity of studies use subjective criteria, such as the number of PCs that
sums up more than 70 or 80% of total variation (considered reasonable
amounts), or retaining the PCs that account for more than 10 or 5% by
themselves. On the other hand, well defined criteria to assess dimen-
sionality of a data set do exist and extensive simulation studies have
pointed to a number of well-performing stopping rules for PCs (Peres-
Neto et al., 2005). One consensus method in the statistical literature
for best performance in recovering subjacent dimensionality is Horn’s
parallel analysis (Franklin et al., 1995; Dinno, 2009), where a number
of data sets with random uncorrelated variables are generated and the
distribution of random eigenvalues compared with the observed values
(see the R package paran – http://CRAN.R-project.org/package=paran
– for an implementation of the method. A simplified R code for covari-
ance matrices is also available from the author). Using a well defined
criterion to determine the number of overdispersed PCs (the ones
that account for more variance than expected in random uncorrelated
samples) should prove more informative in determining shape space
dimensionality than subjective criteria based on absolute amounts of

variance explained. One caveat of parallel analysis is that it is unable
to determine dimensionality of spaces larger than p

2.5 , where p is the
number of variables (A. Dinno, pers. comm.), which is not a relevant
issue for most morphometric applications. Amore relevant issue is that
because parallel analysis attempts to estimate the “true” number of lat-
ent dimensions using statistical inference, a sample size/variables ratio
larger than 3 is recommended (although the effect of high dimensional
low sample size data is still to be determined with simulations).

The estimation of principal components from interspecific data is
usually performed without taking the phylogenetic non-independence
into account. Revell (2009) pointed out that when the observations are
phylogenetically related, this procedure is not optimal, and proposed a
method to estimate principal components that take phylogenetic non-
independence into account. The procedure uses the among-taxa (n×n)
phylogenetic covariance matrix C (the same used in PGLS, for ex-
ample) to allow for the estimation of the eigenstructure. The elements
of the C matrix can be flexible, depending on the evolutionary model
assumed. If a Brownian motion model of evolution is assumed, the
elements of C will be γtij , where tij is the distance along the phylo-
genetic tree between the root and the last common ancestor for species
pair ij, and γ is a parameter related to the magnitude of trait variation
(Martins and Hansen, 1997), also referred to in the literature as the
“rate of evolution” along a branch (Eastman et al., 2011). A more flex-
ible model that allows for stabilising selection constraints would have
the elements of C estimated as γ exp[−αtij ], where α is interpreted
as the strength of selection towards an adaptive optimum (Martins and
Hansen, 1997). Alternatively, the off-diagonal elements of C can be
multiplied by λ (0 ≤ λ ≤ 1), estimated from the data, to take into ac-
count varying strengths of phylogenetic signal (Freckleton et al., 2002).
Starting with a data matrix X (n taxa and p shape variables), one first
estimates a vector a(p × 1) of phylogenetic means, corresponding to
the estimated ancestral shape (for morphometric data) at the root:

a = [(1>C-11)-11>C-1X]>, (1)

where 1 is an×1 vector of ones. The evolutionary variance-covariance
matrix among variables is calculated as:

R = (n− 1)-1(X − 1a>)>C-1(X − 1a>). (2)

The covariance matrix R is also called the evolutionary rate matrix,
because it estimates a matrix of Brownian rate parameters (Revell and
Harmon, 2008; Revell and Collar, 2009). The covariances in the off-
diagonal indicate associated differences relative to an estimated ances-
tral shape inversely weighted by the phylogenetic covariances in C (the
influence of neighbouring branches is removed by negative weights ).
As in PGLS models, multiplication by the inverse of C ensures that
the correct error structure (phylogenetic non-independence) is used in
estimating the covariances. The evolutionary covariance matrix above
is equivalent to a covariance matrix calculated from phylogenetic inde-
pendent contrasts, ifC assumes a Brownianmotion evolutionarymodel
(Revell, 2009). The PCA of the evolutionary variance-covariance mat-
rix can be performed with the spectral decomposition R = VDV-1,
and the PC scores are computed in the original space as

S = (X − 1a>)V. (3)

These phylogenetic PCs will indicate directions of maximum evol-
utionary rates in shape space because the shape changes are standard-
ised by branch lengths. Revell (2009) strongly emphasised that this
procedure does not produce “phylogenetic corrected” PC scores. It
just estimates the eigenstructure properly (as judged by simulations
of multivariate data evolving under a Brownian motion model), tak-
ing the phylogenetic non-independence into account. If phylogenetic
non-independence was present in the original data, the phylogenetic PC
scores will be non-independent as well. The assumption of evolution-
ary model is included in the derivation of matrix C elements (phylo-
genetic covariances), which can be changed to reflect different underly-
ing evolutionary models (Martins and Hansen, 1997; Freckleton et al.,
2002; Blomberg at al., 2003). The R package phytools (Revell, 2012)
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Figure 2 – Phylomorphospaces for principal components of shape, ordinating 11 species of phyllostomid bats based on lateral skull landmarks (Nogueira et al., 2009). The upper panel
depicts a scatterplot for PC scores, whereas the lower panels depict the shape change along the positive direction for each axis as warped outlines (average shape as gray line, positive
deviation as black line). Species with similar diets are enclosed by polygons with di�erent line patterns. The main diet item is listed near the respective groups. The phylogenetic tree is
mapped on the shape subspace. The large circles correspond to the tips and the smaller circles correspond to the nodes (estimated ancestors). A) Scatterplot for the first two PCs from
ordinary PCA. B) Scatterplot for the first two phylogenetic PCs (based on the evolutionary rate matrix, see text for explanation).

provides a function to estimate phylogenetic principal components and
allows for an estimate of C by a Brownian motion model or by the
lambda transformation (which will be equivalent to Brownian motion
if λ = 1). For the visualisation of shape changes associated with phylo-
genetic PCs, the eigenvectors can be plotted as shape changes from a
mean starting shape (Claude, 2008).

This simple procedure can be easily extended to other types of mul-
tivariate analysis, such as Partial Least Squares (PLS) or Canonical
Correlation Analysis (CCA). Revell and Harrison (2008) proposed the
extension of the method to Canonical Correlation Analysis (CCA),
where the data matrices for different sets were transformed before the
analysis, using the phylogenetic covariance matrix C and the phylo-
genetic mean vector a. The method is then carried out using regular
algorithms. For PLS, the same transformed matrices for each block of
variables can be used to calculate the cross-covariances in submatrix
R12, and the singular value decomposition to estimate pairs of vectors
explaining most covariance (Rohlf and Corti, 2000). Significance test-
ing for singular values with permutations (for a null hypothesis of no
association between blocks of variables) might still be carried out in
the analyses. As in the phylogenetic PCA, the interpretation needs to
take into account that the transformed data are not the shapes them-
selves, but shape differences from the estimated root standardised by
branch lengths (similar to what one would get with phylogenetic inde-
pendent contrasts). An alternative method based on maximum likeli-
hood for comparing hypotheses concerning cross-covariances has also
been proposed by Felsenstein (2008), incorporating the influence of
the within-species phenotypic covariances on the among-species cov-
ariances.

A visualisation method for comparative morphometric data is map-
ping a phylogeny on the shape subspace composed by the major axes
of variation among species (PCs). The position of tree nodes is estim-
ated by ancestral character reconstruction and the branches are drawn
as lines connecting the species and their immediate ancestors. This pro-
cedure was first proposed by Rohlf (2002), and became popular in ap-

plied studies (Nicola et al., 2003; Clabaut et al., 2007; Sidlauskas, 2008;
Figueirido et al., 2010; Klingenberg and Gidaszewski, 2010; Mon-
teiro and Nogueira, 2011), receiving the name phylomorphospace (Sid-
lauskas, 2008). Ancestral character reconstruction can be performed by
maximum likelihood (under a Brownianmotion evolutionarymodel) or
squared-change parsimony, depending on software, but the approaches
are mathematically equivalent (Sidlauskas, 2008). A least-squares ap-
proach as used in the calculation phylogenetic independent contrasts is
also possible (Felsenstein, 1985). The estimation of ancestral values is
controversial and probably inaccurate (Cunningham et al., 1998; Lo-
sos, 1999; Webster and Purvis, 2002), unless the real evolutionary pro-
cess was similar to a Brownian motion (Martins, 1999), and should be
used mostly for illustration, so the phylogenetic tree can be mapped on
the ordination scatterplot. This visualisation is particularly interesting
to detect possible convergences among species in different branches,
to get evidence on accelerated morphological evolution, or to analyse
morphospace occupation by different lineages (Sidlauskas, 2008), as
long as the number of relevant PCs are determined by an objective
method and the shape subspace is neither ignoring relevant PCs nor
including irrelevant ones (i.e. PCs that do not explain more variation
than expected at random).

An example of application of the phylomorphospace and the phylo-
genetic PCA is shown in Fig. 2. The data set correspond to landmarks
placed on a lateral view of the skull of 11 species of phyllostomid bats,
studied in Nogueira et al. (2009). The panels on the left (Fig. 2A)
show an ordinary PCA with a phylogenetic tree mapped on the ordina-
tion of the first two PCs (phylomorphospace). The branch leading to the
nectarivore species is aligned with the first PC, whereas the divergence
between frugivores and insectivores is aligned with the second PC. The
phylomorphospace plot shows that each branch diverged morphologic-
ally towards different regions of the PC shape subspace. Looking at
the ordination in Fig. 2A, one might feel tempted to attribute the close-
ness of Phyllostomus with frugivore species to convergence. In fact,
the species of Phyllostomus used (P. hastatus) has a mixed diet where
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Figure 3 – Hypothetical phylogeny with four species showing a change in selective regime
after a speciation event (marked by s). The ancestral phenotype is depicted as θ0 ,
whereas di�erent selective optima are depicted as θ1 and θ2 . The total sum of branch
lengths leading from root to tip is given by T .

the contribution of fruit is almost as large as the one from insects. How-
ever, Horn’s parallel analysis suggested that 3 PCs were over-dispersed
(had larger observed eigenvalues than expected from simulations), and
the third PC is mainly a contrast between the larger insectivores – Mi-
mon and Phyllostomus and the remaining species (not shown in the
example). Therefore, their branch might not be considered convergent
if we consider all relevant shape dimensions. The phylogenetic PCA
(Fig. 2B) is shown on the right panel. The ordination and the shape
changes are similar to the ordinary PCA, in fact, the angles between
the corresponding vectors are more similar than expected from a distri-
bution of angles between uncorrelated uniform vectors (Claude, 2008).
However, the qualitative interpretation of the ordination pattern could
be different, and morphological divergence among closely related spe-
cies is given greater weight in the phylogenetic PCs.

The phylogenetic PCs are a rigid rotation of the original shape space
(and as a matter of fact of the ordinary PCs). Any statistical analysis
that is based on the scores of the entire set of PCs will achieve the same
quantitative results regardless of using phylogenetic of ordinary PCs
(Polly et al. 2013, this volume). However, when a subset of the first PCs
are used or displayed, one will find differences in the ordination and due
to slight changes in rotation. For example, although the shape change
associated with nectarivory is clearly associated with PC1 of the ordin-
ary PCA, in the phylogenetic PCA the same shape change would be a
combination of the positive changes along PC1 and negative changes
along PC2. This finding also visually highlights one important recom-
mendation: to consider the entiremultivariate set of over-dispersed PCs
when fitting a comparative statistical model is more informative and
appropriate than analysing each PC separately as univariate variables.
For the phylogenetic PCA, Horn’s parallel analysis indicated 4 over-
dispersed PCs, and the divergence of Phyllostomus from the frugivore
branch is relegated to the 4th PC, but the general qualitative conclusions
are similar between methods.

Model-based approaches and dimensionality
Moving beyond the phenotype-function-ecology correlations, compar-
ative methods allow for the estimation of evolutionary parameters for
trait diversification andmeasure the agreement betweenmodels of evol-
utionary processes and data (Butler and King, 2004; Freckleton and
Harvey, 2006; Hansen et al., 2008). Model-based comparative ana-
lyses of multivariate data are still mostly confined to univariate ana-
lyses of PCs (Bergmann et al., 2009; van Buskirk, 2009; Collar et al.,
2009; Harmon et al., 2010), possibly because both of software pack-
age limitations and restrictions of sample size imposed by the number
of parameters needed in more complex models with multivariate data.
However, due to the potential pitfalls with univariate analyses of PCs, a

multivariate model-fitting procedure should be favoured with morpho-
metric data, as currently available in the R package OUCH (King and
Butler, 2009).

Monteiro and Nogueira (2011) fitted multivariate models based on
Brownian motion and several postulated adaptive landscapes based on
dietary differences among phyllostomid bat species, to a data set corres-
ponding to five PCs obtained from mandible shape variables. Consid-
ering that p is the number of variables in a multivariate set, a Brownian
motion model (the simplest evolutionary model possible) requires the
estimation of an average vector with p elements and a square variance-
covariance matrix (Sigma squared matrix) with p×(p+1)/2 elements
(the lower triangular matrix, including the diagonal) that measures the
strength of genetic drift (Butler and King, 2004). Stochastic models
for the evolution of a multivariate phenotype consistent with stabilising
selection around adaptive optima, such as the Ornstein-Uhlenbeck (O-
U) model (King and Butler, 2009), assume the form of the differential
equation

dx(t) = A(θ(t) − x(t))dt+ SdB(t), (4)

where A and S are p × p square symmetric matrices of parameters
measuring the strength of stabilising selection and random drift, re-
spectively. The vector θ(t) is the optimum phenotype correspond-
ing to a particular selection regime and B(t) is the standard Wiener
(Brownian motion) process. Fig. 3 shows a hypothetical phylogeny
with four species where branch colours indicate selection regime, based
on example in Butler and King (2004). The evolution of the multivari-
ate phenotypes can be seem as weighted sums of selective optima in
each branch leading to each specific extant species. In this context,
the expected phenotype for species 1 depends on the ancestral pheno-
type (θ0) and the estimated optima (θ1,θ2) for each branch leading to
its current position. According to the multivariate Ornstein-Uhlenbeck
model, the expected mean trait vector for species 1 is

E[x1(T )] =θ0Qe−DTQ-1

+ θ1Qe−D(T−s)Q-1(I − Qe−D(s)Q-1)

+ θ2(I − Qe−D(T−s)Q-1),

(5)

where the thetas are 1 × p vectors of optima, and the multiplying
matrices are equivalent to matrix exponentials as eA = QeDQ-1, for
A = QDQ-1, where Q and D are the eigenvectors and eigenvalues
of A, respectively, and eD is a diagonal matrix with elements eλ, ex-
ponential functions of the eigenvalues of A. The random walk around
the estimated optima is determined by the covariancematrix Sigma (S),
and along with the selection strength matrix A, is used to estimate the
covariance matrix for the expectations. The thetas and expected val-
ues for each species in the tree can be calculated via generalised least
squares and the matrices A and S can be optimised during GLS it-
erations. The procedure described above is implemented in package
OUCH for R (King and Butler, 2009). Each model requires the estima-
tion of 2 × p× (p+ 1)/2 + p×nθ parameters (the number of degrees
of freedom – DOF for the model), where nθ = the number of adapt-
ive optima. The number of parameters that can be estimated is lim-
ited by the number of taxa available, and multivariate data sets will be
particularly demanding on sample sizes. For example, an O-U model
with 5 shape variables and three adaptive optima will require the es-
timation of 45 parameters. As a result, the confidence on estimation
will be reduced and such models can be severely penalised by inform-
ation criteria used in model comparisons (Butler and King, 2004), as
the Akaike Information Criterion will usually be in the general form
AIC = −2 × logLikelihood + 2 × DOF , and models with smaller
AIC fit better the data.

The assumptions of these multivariate models can be better under-
stood if we visualise them as a restricted randomwalk on amultidimen-
sional fitness landscape. The variances and covariances determining
the Normal distribution of the random walk will be the same for all se-
lective regimes and branches (single S matrix), and the strength of the
selective pull will also be the same for all optima (single A matrix).
These assumptions might be unrealistic, and further advances have
been proposed as expansions of the original O-U model with different
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variances and selective strengths for each adaptive optimum (Beaulieu
et al., 2012), demanding separate A and S matrices for each select-
ive regime and greatly increasing the number of parameters estimated.
The model-based comparative approaches will usually require the re-
duction of dimensionality via principal components, but the limitations
and suggestions discussed above regarding interpretation and choice of
number of components should be kept in mind when using this solu-
tion, and the dimensionality of the shape space carefully considered to
avoid excluding relevant dimensions.

The model-based approaches can use the information from macroe-
volutionary patterns ofmorphological diversification among phylogeny
tips (OTUs) to make inferences about the underlying evolutionary pro-
cesses. Recent improvements in model-fitting, such as Bayesian estim-
ation of model parameters seem to be more accurate in determining
evolutionary mechanisms generating data (at least from simulations)
(Eastman et al., 2011). Instead of looking at the correlation of pheno-
typic and ecological variables, these models detect changes in rates of
morphological diversification to detect bursts or variation in tempo and
mode of the evolution of continuous characters among lineages as evid-
ence of past adaptive radiations, periods of continuous gradual change
or periods of stasis (Harmon et al., 2003; O’Meara et al., 2006; Har-
mon et al., 2010; Venditti et al., 2011; Thomas and Freckleton, 2012).
Because most of these models have large numbers of parameters to be
estimated, the need for dimensionality reduction and the sample size
requirements are again a concern for morphometric data sets. It is also
important to realise that the estimation of evolutionary model paramet-
ers and inferences about the correlation of trait blocks are complement-
ary approaches (Paradis, 2012), providing mutual support for the un-
derstanding of morphological evolution. A claim of evidence for an
adaptive radiation due to ecological diversification is made stronger if
models that predict increases in diversification rate fit the data well and
the morphological changes are associated with ecological and func-
tional changes.

Conclusions
The development of morphometric methods went through an exponen-
tial phase just before the end of the 20th century with the geometric
morphometric revolution (Adams et al., 2004) and started stabilising
during the last 10 years. As the methods matured, the most appropriate
methodological combinations, theoretical implications and concepts
have become more clear, for instance, the superiority of Procrustes
superimposition and associated spaces in statistical shape analysis,
as compared to many alternative methods considered before (Rohlf,
2000). It is now relatively easier for a beginning researcher to find
relevant advice or guidance around the literature and jargon. The com-
parative methods are going through a period of exponential production,
where a large number of methods and alternative models are proposed,
and the detailed statistical properties and relevance of different meth-
ods are being clarified through simulations and theoretical contribu-
tions (Freckleton et al., 2002; Martins et al., 2002; Hansen and Orzack,
2005; Rohlf, 2006; Revell et al., 2008). There are good introductory
texts focused on practical aspects (Butler et al., 2008; Paradis, 2012),
but a larger theoretical book summarising recent developments is in
demand by an ever increasing community of users. One difficulty of
the early days was the availability of software packages to perform the
analyses, the formatting differences of all types of data (phylogenies,
traits), and software bugs. The widespread use of the R environment
and the large number of packages for phylogenetic and comparative
analyses (Paradis, 2012) available in this system (31 packages imple-
menting comparative method functions, checked in 31 July 2012) has
greatly improved access to almost all published methods. The most
comprehensive package APE (Paradis et al., 2004) provides not only
the most common methods (contrasts, PGLS), but also phylogenetic
tree edition and visualisation tools also used by most other phylogen-
etic packages. See also the continuously updated package descriptions
on the phylogenetics CRAN task view maintained by Brian O’Meara
(http://cran.r-project.org/web/views/Phylogenetics.html). The different
functions and packages show considerable compatibility among each

other and the authors of most new methods being proposed provide
R packages and functions. A good source for help and informa-
tion is the email list for the Special Interest Group R-sig-phylo
(https://stat.ethz.ch/mailman/listinfo/r-sig-phylo), where most authors
and package developers make announcements, answer questions and
provide assistance with the use of comparative methods. An alternat-
ive software that can perform comparative analyses in two-dimensional
(previously aligned) morphometric data is Mesquite (Maddison and
Maddison, 2011), but R provides a more flexible and complete stat-
istical environment.

The complexity of morphometric data is increasing with the greater
availability of 3D data collection devices, and the models in comparat-
ive analysis are also becoming more complex in number of parameters.
As a consequence, the assessment of appropriate shape space dimen-
sionality should be a matter of great concern. It is an exciting time to
be a morphometrician working with comparative data.
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